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ABSTRACT

Stem cells are fundamental to human life and offer great therapeutic potential, yet their biolo-

gy remains incompletely—or in cases even poorly—understood. The field of stem cell biology

has grown substantially in recent years due to a combination of experimental and theoretical

contributions: the experimental branch of this work provides data in an ever-increasing number

of dimensions, while the theoretical branch seeks to determine suitable models of the funda-

mental stem cell processes that these data describe. The application of population dynamics to

biology is amongst the oldest applications of mathematics to biology, and the population

dynamics perspective continues to offer much today. Here we describe the impact that such a

perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our

model system, we discuss the approaches that have been used to study their key properties,

such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also dis-

cuss the relevance of population dynamics in models of stem cells and cancer, where competi-

tion naturally emerges as an influential factor on the temporal evolution of cell populations.
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SIGNIFICANCE STATEMENT

Adult stem cells engage in complex interactions with their environment and progeny; these are
believed to maintain their stemness. Here we put these observations into a population biology
framework which allows us to take ideas from ecology and shed light on the dynamics within
the stem cell niche. Using the particular example of hematopoietic stem cells, we show that
this perspective helps to understand stem cell dynamics both in cases of health and disease.

INTRODUCTION

Mathematical modeling already has a rich his-
tory of application to biology, despite the per-
ceived dichotomy between mathematical and
biological science [1]. However, it is only in
the last decade or so, with leaps in our ability
to quantify cellular and molecular biology, that
systems biology of cells and tissues has arisen,
and greatly enhanced our knowledge of
human biology in health and disease.

Stem cell biology concerns cells (in develop-
ment and adulthood) that exhibit stemness; an
elusive characteristic as we will discuss, it is
loosely defined by the ability of a cell to self-
renew and to produce progeny indefinitely.
Hematopoiesis describes the formation of blood
cells, driven by a population of hematopoietic
stem cells (HSCs) in the bone marrow [2]. This is
a highly dynamic system, producing two million
new red blood cells every second [3], and it is
perhaps the best characterized mammalian
stem cell system. It is thus well-suited to

addressing general questions about stem cell
behavior, in addition to addressing questions
about the regulation of hematopoiesis.

Population biology studies the behavior
and interactions of groups of species—tradi-
tionally whole organisms, but these can also
be cellular species including stem cells. We
argue that—in the tradition of Dobzhansky
and Lynch [4, 5]—nothing in stem cell biology
makes sense except in the light of population
biology. In order to answer questions regard-
ing (for example) stem cell differentiation, line-
age fate, and competition, one must consider
more than individual cells or even lineages,
but the complex set of interactions within and
between cell lineages and the extent of envi-
ronmental influences. Indeed, as the body of
literature on stem cell mathematical models
grows (see Population Dynamics section
below), efforts increasingly include a popula-
tion perspective, and the results are reward-
ing. For example, we now have better theories
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of how stem cell (a)symmetric division is controlled, and of
the role that competition plays in determining outcome, fol-
lowing incidence of cancer.

In the next section, we give an overview of population
biology in a historical context and introduce the key concepts
of competition and stability. We go on to discuss current
understanding of stem cell function, behavior, and the role of
the niche with focus on the HSC system. Subsequently, we
explain how the population perspective has brought insights
into stem cell models, first for the healthy hematopoietic sys-
tem and second in cases of disease. We end by drawing some
conclusions and tentatively mapping out the road ahead for
both biologists and theoreticians.

THEORETICAL POPULATION BIOLOGY—AN INTRODUCTION FOR

CELL BIOLOGISTS

One of the best-known models describing a dynamical system,
which arguably marked the beginnings of mathematical biolo-
gy, is given by the 100-year-old Lotka-Volterra equations [6,
7]. The system describes two populations, X and Y , which
interact in the following way:

dx

dt
5x a2gyð Þ (1)

dy

dt
5y gx2bð Þ (2)

where x and y denote the abundances of species X and Y

respectively. In the absence of Y, X will grow exponentially at
rate a; in the absence of X, Y dies (decays) at rate b. When
both species are present, Y consumes or depletes X at rate
gxy: proportional to parameter g and the interaction between
X and Y . This system is interesting dynamically because it per-
mits, depending on the values of the parameters a; b; and
g, stable oscillations between X and Y . In Figure 1, we plot
the solutions to equations (1) and (2), denoting X as “hares”
and Y as “lynxes” (a classic pair of predator-prey species). It
can be seen that both species exhibit stable oscillations; the sta-
tionary state at these parameter values is known as a limit cycle.

There are three important concepts to highlight from the
Lotka-Volterra example. The first is that by specifying our bio-
logical assumptions precisely using mathematics, we are able
to test them quantitatively in a way that was not possible
before. Rather than suggesting that “hare population growth
is limited by the rate at which hares are eaten by lynxes,” we
can quantify this statement by creating a mathematical model
and then test it by simulating the model and evaluating its
ability to describe biological data. For example, after 2 years
(48 months) in the simulation of Figure 1, there are approxi-
mately equal populations of hares and lynxes. The model pre-
dicts that 6 months later there will be many more hares than
lynxes. We can ask what would happen if, at 48 months, lynx-
es began to predate on hares twice as much. Under these
conditions, the lynx population would not have dropped and
still be around 5-6 months later, and the hare population
would have risen more slowly than before.

The second concept to highlight is that this very simple
model with only three parameters already describes quite
well the interactions between two species. Additional terms

are needed to provide a good fit to most real predator-prey
datasets, but this basic model is a good first step. That (vastly)
complicated biological systems can be described successfully
by (very) simple models is perhaps the most important lesson
here. Finally, by establishing the validity of this model, we are
able to use it to make predictions and thus prompt new bio-
logical hypotheses.

In the 1960s, MacArthur and Wilson [8] made a pivotal
contribution to population biology with the introduction of
the concept of Island Biogeography, which they used to pre-
dict how ecological dynamics would determine species’ rich-
ness in island habitats. These can be islands of land
surrounded by water, or less traditional “islands” such as
mountain peaks, trees or areas of a lake divided according to
their temperatures [9]. Alternatively, islands (referred to as
niches) could be areas defined spatially or functionally within
multicellular organisms that determine the function or dynam-
ics of particular cell types. In 1972, May [10] proved a theo-
rem stating that as systems (of randomly interacting species)
grow, their stability in general will decrease and tend toward
zeros for large enough (or very highly connected) systems.
This went against scientific opinion at the time, which had
assumed that stability ought to increase with complexity [11,
12]. May [13] went on to develop the concept of niche over-
lap, demonstrating how variability between species can
impact their ability to occupy the same niche. Competition
naturally arises in cases where niches overlap; this becomes
particularly relevant when we consider healthy and malignant
stem cells, as we will see below.

Evolutionary game theory, pioneered by Maynard Smith
and others [14], was developed alongside theoretical ecology
and provided new tools for studying dynamics within popula-
tions of species. Given a set of players and for each player a
set of strategies, it can be found whether there are evolution-
ary stable strategies: these are ones for which, if adopted by
the whole (large ! infinite) population, no mutant can enter
and displace the existing species. Despite their different ori-
gins, both May’s stability criteria [10] and the evolutionary
stable strategies of Maynard Smith [14] define conditions
under which a system, if perturbed, will return to its initial

Figure 1. Population dynamics of competition. Simulation of the
Lotka-Volterra equations as given by equations (1)–(2) with
parameters a 5 0.3, b 5 0.6, g 5 0.05.
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state. Such frameworks enable us to interrogate the capacity
for systems to perform robustly in dynamic environments. The
multicellular organism provides a prime example of such an
environment.

Alongside these developments, significant contributions to
the study of population dynamics were also made through
use of models in cell biology. Mackey [15] developed mathe-
matical models to describe cyclical dynamics in hematopoie-
sis, enabling assessment of the impact to the system of
certain parameters, such as proliferation or differentiation
rates [15–17]. This represents one of the earliest mathemati-
cal models considering directly testable hypotheses (following,
e.g., Till et al. [18]), and enabling rigorous investigation of sta-
bility within the hematopoietic system. Other early example
of fruitful modeling work regarding hematopoiesis stem from
immunology, in particular on regulatory immune cell dynamics
in response to viral infections; for example [19], and reviewed
in [20].

More recent work has shed new light onto the topics of
complexity and stability in biological systems. Allesina and
Tang [21] advanced the results of [10] by deriving stability
properties of randomly interacting communities that exhibited
structure, however these structured systems still do not
behave according to a known set of interactions (such as e.g.,
for equations. (1) and (2)). This is addressed in [22] by a sta-
tistical analysis of stability. Here it is shown that stability
properties depend crucially on the type of model that is con-
sidered, and that great care must be taken in drawing conclu-
sions regarding the stability of systems without reference to a
particular model. It has also been shown for models of stem
cell differentiation [23] that the niche confers stability onto
stem cell systems with remarkably high probability [24], in
contrast to previous results. Thus, despite the time that has
passed since the work of Lotka and Volterra, questions regard-
ing the stability of ecosystems remain very topical today, and
the debate rumbles on [25, 26].

STEM CELL NICHE DYNAMICS

Stem cells are governed by intrinsic and extrinsic processes
that remain incompletely characterized. We are going to focus
on hematopoiesis as a model system because it is well-suited
to addressing questions of stem cell biology, and population
biology. Thus, the results of studies of the hematopoietic sys-
tem can inform stem cell behavior more generally; in particu-
lar regarding questions of niche population dynamics and
competition. Here the ideas from ecology developed above
can prove useful.

Hematopoietic Stem Cells

Hematopoiesis occurs in all vertebrates and accounts for the
production and renewal of all types of blood cell throughout
the lifetime of an animal. Driven by HSCs, this process begins
in the yolk sac, aorta-gonad-mesonephros region, and placen-
ta during early development [2]. HSCs subsequently move
through the fetal liver and finally migrate to the bone marrow
[27], which remains the dominant site of hematopoiesis
throughout life, although HSCs can be (reversibly) mobilized
into the blood [28]. In the case of severe perturbations,
hematopoiesis can occur in the spleen, albeit with sub

optimal output [29]. Hematopoiesis is hierarchical, and can be
pictured as a series of branchings in which HSCs give rise to
successively more lineage-restricted progenitor, and eventually
terminally differentiated cell populations. A schematic of this
hierarchy is shown in Figure 2. Recent work has challenged
the status of the hematopoietic hierarchy [30, 31], and sug-
gests a move toward fewer branch points and greater hetero-
geneity within the system than was previously thought. This
should, if substantiated, also shape the stability of the dynam-
ics of the hematopoietic system [22, 24].

Qualifying the stemness of a cell is not straightforward
[32, 33]. The long-term follow-up required to prove that the
cell can regenerate tissue successfully, coupled with the het-
erogeneity of most (if not all) cell populations means that we
cannot ever say with certainty that a particular cell is an HSC.
The best we can do is to define as HSCs the population we
obtain by sorting cells using the best available cell surface
markers with the knowledge that probably only a subpopula-
tion of these are “true” HSCs. It is thus worth keeping in
mind that, due to the elusive nature of stem cells, analyses
can be difficult and may at times rely on inaccurate
assumptions.

Competition in a Stem Cell Niche

The niche of an organism is defined as the space it occupies
within its habitat and the resources that it requires to func-
tion. This definition is applicable to cellular species in the
same way as it is to complete organisms. There exists a mam-
malian niche—found within the bone marrow—that is neces-
sarily occupied by HSCs. This dependence of a (cell) species
on its niche bears clear resemblance to many examples in
ecology, such as the koala bear, who relies almost entirely on
eucalyptus leaves for sustenance: a eucalyptus-supporting
environment describes the koala bear’s niche. First introduced
by Schofield [34], our understanding of the HSC niche has

Figure 2. A proposed hierarchical description of hematopoiesis.
Dashed arrow denotes a putative transition. Abbreviations: CLP,
common lymphoid progenitor; CMP, common myeloid progenitor;
GMP, granulocyte-macrophage progenitor; HSCs, hematopoietic
stem cells; LMPP, lymphoid-primed multipotent progenitor; LT,
long term; MEP, megakaryocyte-erythroid progenitor; NK, natural
killer, ST, short term.
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grown dramatically in recent years: a combination of effects
from vasculature, endosteum, endothelial and mesenchymal
stromal cells contributes to the niche, although their relative
importance is still subject to further analysis [35].

In 2003, it was first shown that osteoblasts regulate HSCs
in the niche [36, 37]. Osteoblasts reside in the endosteum—
the surface between bone and bone marrow, thus suggesting
that the endosteum could be an HSC niche location. Using
cell surface markers [38], and then using two-photon and con-
focal microscopy [39], it was demonstrated that HSCs are
indeed found near to vessels and/or osteoblasts and the end-
osteal surface. The question of whether HSCs are located at
or near the endosteum remains under debate, with evidence
from Kiel et al. [40] suggesting that HSCs reside near but not
at the endosteum. An important role in defining HSC niches is
also played by perivascular cells (residing at the periphery of
blood vessels) [38, 41]. Other works [42–46] suggest that
HSCs occupy a perivascular niche with support from mesen-
chymal stem cells, endothelial cells, and CXCL12-abudant
reticular cells but without support from osteoblasts, based on
conditional depletion studies involving the stem cell factor
ligand and CXCL12 from different cell types.

In addition to these factors, the progeny of HSCs can
directly exert an influence on the niche [47]; and macro-
phages play a role in niche maintenance [48]. The picture we
have is thus complicated and far from complete. The complex-
ity increases further when we consider functional aspects of
the niche: how is HSC dormancy controlled [49]? Is the niche
solely a place of quiescence or does it also allow for HSC self-
renewal [50]? If the niche allows for both quiescence and
renewal, does this happen through temporary changes to
niche-supporting factors or do HSCs traffic between distinct
(sub-)niches when changing fate? Is the niche purely local, or
does a level of quorum sensing (of soluble factors) exist?, the
contributions of which could appear during steady state
hematopoiesis or following some perturbation.

Within the framework of population biology, the definition
of the niche may be broader: shifting toward a definition that
is functional rather than strictly anatomical [51]. When con-
structing a model, choice of the niche must depend on the
goal of the model and be justified accordingly. In the case of
hematopoiesis, it could be defined as the area in which an
HSC is in direct contact with a niche-supporting cell, or the
extent of influence of all extrinsic niche signals on HSCs, or
(more broadly) as the volume of the whole inner bone mar-
row cavity.

Following malignant transformation in the hematopoietic
hierarchy, leukemia can arise, interact with, and disrupt nor-
mal hematopoiesis. It has been shown in vivo that leukemia
progression disrupts different hematopoietic cell species in
different ways [52, 53]. Leukemia might compete with healthy
hematopoietic species by directly changing the microenviron-
ment to create abnormal niches [54]. Leukemia stem cells
(LSCs) can also drastically alter the niche by affecting mesen-
chymal stem cell and, in turn, osteoblast function through a
number of signaling pathways [55]. As such, bone marrow
niches may need to be redefined (both in terms of size and
composition) once leukemia is established. What remains
unknown is the extent to which HSCs and LSCs respond in
similar or different manners to signals from the niche. In
some cases, leukemia might interact directly with

hematopoietic progenitor cells affecting the parent HSC popu-
lation only indirectly [56, 57]. There is, in general, a growing
role for hematopoietic progenitor populations, challenging the
influence that HSCs exert over hematopoiesis [58].

Given this picture of HSCs and LSCs occupying the same
or similar niches, competition naturally emerges as an impor-
tant component of leukemia progression. Describing the
nature of competition, how it influences disease, and how it
may be overcome becomes a central goal of modeling such
systems. Here, by borrowing ideas from ecology, we are set
to make much progress and gain greater insight than by con-
sidering populations in isolation. Recently, competition has
been shown unequivocally to play a role in hematopoietic
processes in the thymus [59].

Cancer stem cells, first identified in the leukemia system
[60, 61] have also been found in solid tumors including those
developing in the brain [62], colon [63, 64], and epidermis
[65]. Even given a clonal (nonhierarchical) description of can-
cer, competition will exist between malignant species and the
healthy cells that immediately surround them. Some of the
recent work that attempts to elucidate HSC competition can
inform our understanding of competition and cancer more
generally. Such work may help to answer questions in cancer
research from a stem cell perspective, such as the poorly
understood mechanisms of metastasis, and the relationship
between cell competition within the body and cancer growth/
dormancy [66].

POPULATION DYNAMICS OF HEMATOPOIESIS

Here we describe recent attempts to model healthy and
malignant hematopoiesis from the perspective of population
biology. We also describe a few results from studies of solid
tumors, and highlight how such work has yielded insight into
the function and dynamics of stem cells.

Models of Healthy Hematopoiesis

Despite considerable success in characterizing hematopoiesis,
crucial remaining questions include how stem and multipotent
progenitor cells control the balance of symmetric and asym-
metric differentiation, and how the system responds to per-
turbations, such as anemia, infection, or inflammation.
Another crucial question regards the nature of stemness itself;
as we have discussed, defining a cell as a stem cell is difficult.
This was addressed mathematically by Wolkenhauer et al.
[67], who propose a definition of stemness based on lineages
rather than cells. They go on to prove a theorem showing
that tissue fates emerge in a consistent manner from this
lineage-based definition of stemness. We are also of the opin-
ion that this approach—moving away from cells and toward
lineages—ought to be adopted more often in practice. It
frames stem cell biology within a population perspective and
in doing so it helps to elucidate tissue-level phenomena.

To study the dynamics of hematopoiesis, Manesso et al.
[68] present an ordinary differential equation (ODE) model
containing details for many species in the hematopoietic hier-
archy. This model is appealing for its coverage of species with-
in the hierarchy (including many stem and progenitor species
explicitly). By the inclusion of feedback signaling, the model is
able to recapitulate observed steady state levels of species
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within the hierarchy following perturbations such as hemor-
rhage or irradiation. Manesso et al. [68] predict that lymphoid
cell maturation is time demanding, especially for the transi-
tion from common lymphoid progenitors to naive T cell pro-
genitors, which could take 2,000 days (greater that the
average lifespan of a mouse). This result, for which there also
exists experimental evidence [69, 70], thus provides evidence
against the hematopoiesis paradigm which states that lym-
phocyte production occurs via a common lymphoid progenitor
cell population.

The branching point that divides erythroid and myeloid
lineages is particularly well-studied within the hematopoietic
hierarchy, and has been shown to be controlled by two mas-
ter genes: GATA1 and PU.1 [71–73]. These models are able to
describe the process of choosing between the two cell fates
and propose that (a) cells are “primed” before differentiation
and that (b) the primed state can arise following a loss of
cooperativity between the two genes. Buzi et al. [74] also
address questions of HSC differentiation and identify—via
control theory feedback modeling—that the introduction of
lineage branching greatly improves the robustness of the
system.

Cell-fate decision processes are not instantaneous but
depend on the “history” of the cell/lineage; that is an out-
come reflects signals that the cell received sometime in the
(typically recent) past and acts upon. This can be modeled
using delay differential equations [75] and difference equa-
tions [76], which have been used to study hematopoiesis, and
in particular to investigate fluctuating population sizes.
Mackey [75] recapitulate the behavior of periodic fluctuations
in different blood cell populations and show that, while stable
oscillations exist, the system is chaotic in other regions of
parameter space. Xu et al. [76] build on this work to address
HSC differentiation via difference equations. They derive con-
ditions that define HSC behavior: either by permitting oscilla-
tory behavior or by guaranteeing a single-valued equilibrium
for HSCs (via global asymptotic stability).

In addition to these deterministic models used to study
the hematopoietic system, stochastic methods have also been
employed [77–80]. These are appropriate when small species
numbers make the effects of noise important. Since HSCs are
indeed a rare population of cells (they make up approximately
0.01% of cells in the hematopoietic system [81]), stochastic
effects are at times important; however the additional com-
putational cost of most stochastic models means that their
use should be justified; despite their assumptions, determinis-
tic models often suffice.

A mixture of stochastic kinetics and ODEs (as the mean
approximation of the stochastic case) are used by Mangel and
Bonsall [77] to model HSC processes of self-renewal and dif-
ferentiation. The authors use results from life history theory
[82] to describe conditions for which HSCs can survive for lon-
gest in the niche, and find interesting similarities between the
distribution of cell cycle times and the results of Till et al.
[18] in their seminal stem cell paper. This suggests that the
variation that is seen is the progeny of stem cells in colony-
forming assays can be connected to variability in the HSC cell
cycle.

The GATA1–PU.1 gene circuit that was considered above
from a deterministic perspective has also been analyzed sto-
chastically, via construction of a Boolean network in order to

elucidate different attractors of the system [79]. Using this
method, the authors claim to describe successfully the four
different cell fates (erythrocytes, megakaryocytes, monocytes,
and granulocytes) according to their gene expression profiles.
In a similar approach, Villani et al. [80] present an interesting
model that describes cell differentiation as an emergent prop-
erty [83] of the underlying gene transcriptional network, using
random Boolean networks and linking network attractors to
different cell fates. They use this model to stress the role that
noise may have in driving differentiation. There is enormous
scope for developing further variations of such multiscale
models, where molecular processes inside the cell drive and
are in turn influenced by, population-level processes.

Inference of general pathways for differentiation is a more
difficult problem, yet progress here—in deciphering the quali-
tative characteristics of hematopoiesis—begins to be made
[84, 85]. Buchholz et al. [84] describe immune cell dynamics
with a probabilistic model, from which a framework with
which to describe T cell specification emerges, stressing the
importance of stochastic processes in the determination of
phenotype. Peri�e et al. [85] study pathway specification in the
hematopoietic stem and progenitor cell compartments, using
cellular barcoding as a means to reconstruct specific lineages.
Both of these examples enable analysis of the qualitative
pathways that define cell fate during hematopoiesis; as data
resolution improves (in particular single-cell data), a need for
significant further efforts along similar lines to these will
emerge.

Concepts from statistical mechanics are also beginning to
gain traction in stem cell biology. Statistical mechanics
describes how systems-level (macroscopic) properties emerge
from the (microscopic) interactions of a very large number of
interacting particles. There has been interest in its application
to topics ranging from protein folding to gene regulatory net-
works [86, 87]. More recently, concepts from statistical
mechanics have been applied to stem cell potency and fate
determination [88, 89] These works pose the question: how
do cell fates (e.g., pluripotent, lineage-specifc) emerge from
large networks of interacting transcription factors? Thus pro-
gress toward constructing a theory for the statistical mechan-
ics of stem cell states has been made, although these ideas
remain generalized and the topic clearly deserves closer
attention at all scales ranging from the molecular processes
inside cells to the population-level processes inside the niche
or the whole organism. Here, too, we can draw on useful
analogies to ecology, where concepts from statistical mechan-
ics have yielded qualitative insights into the spatio-temporal
dynamics of ecosystems (especially the persistence of
species).

Inferring the Parameters of Hematopoiesis

Models allow us to estimate key parameters of hematopoie-
sis, such as the number of HSCs, their proliferation, and their
differentiation rates. Evidence that the total number of HSCs
is conserved in mammals—on the order of 10,000 cells per
animal [90, 91]—was contested by later models that sug-
gested instead an allometric scaling relationship between the
number of active HSCs and the total body mass [92].

Several modeling studies, coupled with experimental
observations, have attempted to derive the fundamental rate
parameters governing HSCs. To estimate the proliferation rate
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of HSCs, different cell labeling assays including bromodeoxyur-
idine (BrdU), Histone H2B green fluorescent protein (H2B-
GFP), and Carboxyfluorescein succinimidyl ester (CFSE) have
been used [93–95]. An active/dormant model of HSCs pro-
poses that a subset (15%–45%) of the HSC population are
active, with the rest comprising a dormant HSC subset [93,
96]. Estimates for the rate of proliferation of the active frac-
tion of HSCs based on H2B-GFP and BrdU label-retaining
assays suggest that stem cells divide approximately once
every 28-36 days; and that so-called dormant HSCs divide
once every 149-193 days [96]. These numbers are roughly
consist with [97], who estimate that, on average, (long-term)
HSCs divide once every 110 days and short-term HSCs divide
once every 24 days. Foudi et al. [94] derive an even more
conservative estimate for the dormants HSCs, dividing at a
rate of only 0.8%–1.8% per day. Similar studies have been
performed based on CFSE labeling, giving an estimate of
active stem cell divisions of seven times in five weeks [95],
however the population studied here (Lineage2c-Kit1Sca-11)
is heterogeneous for HSCs. Heterogeneity overall is likely to
substantially affect efforts to identify these parameters, so
much so that caution must be taken in their application. Fur-
thermore, all of these estimates relate to steady state hema-
topoiesis, and how these may change following perturbations
is largely open to speculation.

In addition to stem cell proliferation rates, the rates of
transition (differentiation) between early hematopoietic stem
and progenitor cell compartments have been estimated using
a Cre-derived reporter mouse whose HSCs selectively express
yellow fluorescent protein in response to tamoxifen [97]. This
model enables detailed analysis of the rates by which specific
(e.g., myeloid) branches of hematopoietic cells are produced,
and, coupled with a mathematical model, was used to esti-
mate the proliferation and differentiation rates, via fluxes
through the compartments.

As has already been mentioned, the estimates derived in
this section do not apply to the system under perturbations,
such as irradiation or infection. For such inferences, we
require data for control and perturbation scenarios in suffi-
ciently high resolution, and inference ought to be performed
within a Bayesian framework. Preliminary efforts toward such
goals have been made, however the current disparity
between data and model complexity forgoes comprehensive
studies [78, 98, 99].

Finally, it is important to keep in mind that our models of
hematopoiesis are hopelessly oversimplified representations
of a much more complicated real process. This, in turn, needs
explicit accounting for [98, 100].

Models of Leukemia and Competition

We now turn our attention to mechanistic models that
describe how hematopoiesis is perturbed following cancer
incidence. Many models have been developed to study this
and related questions, highlighting the need for an explicit
description of competition from the outset and providing
direction for therapeutic strategies that are most beneficial
for disease eradication.

Roeder et al. [101] develop an agent-based model to
describe the stem cell dynamics of self-renewal and differenti-
ation and from this work and its extensions [102–104]; the
model demonstrates the ability to reproduce expected stem

cell behaviors both in health and disease. In the latter case,
competition naturally emerges from the model between
agents that define healthy and LSCs; the implications of which
can thus be studied. The model is used to predict how the
hematopoietic system will respond to chronic myeloid leuke-
mia (CML). Here the authors suggest that the efficacy of drug
therapy can be increased by stimulating proliferation during
therapy [103]. They also provide a predictor for the chance
that an individual patient will relapse, thus offering the poten-
tial for patients who are predicted not to relapse to be taken
off treatment after some time [104].

In 2005, Michor et al. [105] presented an alternative,
deterministic model for CML using ODEs. This model was used
to suggest that leukemia progresses by a biphasic decline
(during treatment), with the first phase representing death of
differentiated leukemia cells and the second representing
death of leukemia progenitor cells. This model was one of the
first descriptions of CML dynamics and provides interesting
results, but it does not take into account interactions
between healthy and CML lineages. Failure to account for this
leads to unrealistic vast overestimation of the abundances of
LSCs [98].

Extensions to this model added interactions between
HSCs and LSCs, and these new versions were used to model
CML dynamics and attempt to provide better treatment prac-
tice. The authors predict that adding a stem cell stimulating
factor does not enhance treatment of CML [106] and suggest
that it might not be safe to discontinue treatment even when
disease reaches very low levels [107].

In work that followed, we contended these results, and
suggested that in fact maintenance of HSCs is an effective
strategy against leukemia [51]. When accounting for
population-level feedback mechanisms, it appears that main-
tenance of a viable HSC pool was more important than a
focus on eradication of leukemia cells for disease recovery. In
Figure 3, the trajectories of healthy and leukemia cell species
are shown as they interact within the bone marrow niche;
here we start with a diseased niche but over time find that
healthy hematopoiesis is restored and the leukemia species

Figure 3. The competition taking place between healthy and
LSCs within the HSC niche. Under the in vivo conditions simulated
here, leukemia is eradicated from the bone marrow after approxi-
mately 60 weeks. [98]. Abbreviations: HSCs, hematopoietic stem
cells; LSCs, leukemia stem cells
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are driven to extinction. Testing these predictions is currently
at the limits of our experimental capabilities, although this is
changing [108, 109].

A model comparison study of CML revealed that models
without explicit competition between healthy and cancer
stem cell lineages could not provide realistic predictions, and
demonstrated that those models which do consider competi-
tion do so in different, testable ways [98]. In particular, it pro-
posed an important role for progenitor expansion in
maintaining remission. This has not yet to our knowledge
been tested, but is in line with current thinking in HSC biology
which supports a more important role for progenitor cells
than had previously been assumed [58].

While these models deal with the dynamics of disease,
Traulsen et al. [110] look at how disease in the hematopoietic
system can arise from a neutral mutation (rather than one
that confers a selective advantage to its progeny) using a
Moran process (a type of branching process used to describe
genetic drift). They also go on to suggest that leukemias that
arise due to a neutral rather than selective process may be
harder to treat; this again reflects processes that are already
reasonably well understood in population genetics [5].

CONCLUSION

Stem cell regulation occurs across many tissues with remark-
able sensitivity and robustness: enabling tissues to respond to
a host of external perturbations and restore homeostasis. Yet
stem cells themselves are rare, elusive, and driven by noisy
stochastic processes [111, 112]. To reconcile these phenome-
na, a systems perspective seems sensible, if not necessary.
Moreover, here we have suggested that stem cell systems are
fundamentally systems of populations, not individuals. As
such, a century of theoretical results from population biology

are applicable, and we believe that much will be gained from
their application.

Cancer has been frequently and correctly be described as
an “evolutionary disease,” and evolution always occurs in
(and shapes) a given ecological setting. Thus understanding
the drivers of population dynamics, and identifying ways of
influencing the “fate” of a population will have obvious impli-
cations for control and therapy of cancer. But also in healthy
tissue homeostasis—including a healthy hematopoietic sys-
tem—we will find fruitful applications for concepts from pop-
ulation biology. The “ecology of blood,” or any other tissue,
also provides a framework in which we consider the process-
es underlying development and growth. As new technologies
emerge [113, 114], these population-based models will
become more useful, and—in places—essential to make sense
of ever-increasing complexity in biological data.
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